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Abstract. We study the dynamical out-of-equilibrium behaviour of aJ = ±1 Ising spin glass
on quenchedφ3 graphs. We show that magnetization and energy decay with a power-law
behaviour, with exponents that are linear inT/Tc. Quenchedφ3 graphs turn out to be a very
effective way to study numerically mean-field spin glasses.

Spin models on quenchedφ3 graphs have been considered in the last few years as a possible
effective way to define mean-field models [1, 2]. In general one can considerφz random
quenched graphs (with the limitz → ∞ coinciding with the usual Sherrington–Kirkpatrick
(SK) definition of the mean field). One obtains mean-field behaviour on such graphs for the
same reason as on the Bethe lattice because of the tree-like local structure, but the drawback
of a dominant surface contribution is absent. It is not clear whether this approach is
advantageous analytically since the large-number law cannot be applied in a straightforward
manner, and in general calculations appear more involved than for the SK approach]. On
the other hand from the numeric point of view thereare distinct advantages, since in this
case one is dealing with a model with local interaction where one spin update takes the
order of z operations and not the order of volume. A parenthetic warning is probably in
order at this point—the fact that computation is faster does not necessarily imply that the
model is the best choice. One has to perform the simulation to check. For example, the
hypercube definition of the mean field (see for example Parisi and Ritort [1]) undergoes
very strong finite-size effects, that can make the analysis of the thermodynamic limit very
obscure.

Gardneret al [3] have drawn attention to the fact that when looking at the dynamical
behaviour of disordered systems one can expect to see power-law behaviour. The complex
landscape does not allow a fast exponential convergence. Their calculation (that integrates
exactly a small number of time steps) establishes that theT = 0 parallel dynamics from
a magnetized state leads to a non-zero magnetization expectation value with a power
correction. Eisfeller and Opper [4] introduced a new approach combining the dynamical
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functional method and a Monte Carlo simulation of a stochastic single-spin equation that
allowed the determination with good precision of the value of the remanent magnetization,
m(∞) = 0.474 and of the exponentµ(T = 0) = 0.184 where

m(t) − m(∞) ' (t/τ )−µ. (1)

In a recent work Ferraro [5] has generalized the Eisfeller–Opper work to the non-
zero temperature case. In this way he has been able to establish that in the SK model
the magnetization and the energy do decay with power laws. Such a generalization of
the Eisfeller–Opper method to non-zeroT does indeed allow a good determination of the
magnetization exponent (which turns out to be linear inT/Tc), but is less effective for the
energy exponent. Very-large-scale dynamical simulations of the SK model from Rossetti
[6] allowed a first-direct Monte Carlo determination of the power exponents, and showed
that, in the case of the SK definition, the mean-field numerical simulation is very tough
due to the non-local interaction. For comparison it is worth noting what happens in real
experiments with typical spin glasses (see for example [7]). If one fits with the form in
equation (1) one finds thatµ(T ) ' 0.4T/Tc, whereτ is of the order of magnitude of the
microscopic time for single-spin flip, and turns out not to depend onT .

Given the difficulty of simulations with non-local interactions and the success of theφ3

graph simulations in reproducing static mean-field spin-glass behaviour [2] it is obviously
tempting to investigate dynamical aspects of spin-glass behaviour withφ3 graphs. We have
thus carried out a Monte Carlo simulation of the dynamics of a spin-glass model onφ3

graphs for different temperature values and graph sizes. The principal measurements of
interest in such a simulation are the time series of the energy and the magnetization, which
we have measured in the standard fashion. From these time series we have systematically
analysed the time dependence of magnetization and energy, starting from a cold system with
m = 1. We have tried to find the temporal regions where we could exhibit a clean-scaling
behaviour, and we discuss our findings in the following.

We have used integer, uniformly distributed, quenched random couplingsJ = ±1 (i.e.
the probability distribution for the quenched bond distribution isP(J ) = 1/2δ(J + 1) +
1/2δ(J − 1)) in our simulations here because the earlier static simulations carried out with
this distribution were known to give convincing agreement with theoretical calculations [2].
This provided a degree of confidence in the code used. One slight drawback of this choice is
that with integer couplings the system has an energy gap, and at too lowT values the system
will not be able to converge to equilibrium (as we have checked in preliminary numerical
simulations). In order to avoid this problem we have kept ourT values sufficiently high
to avoid the influence of the gap. In any case, preliminary work with a Gaussian coupling
distribution where there is no gap indicates no fundamental differences with the results here.

For each of the graph sizes simulated 100 differentφ3 graphs were generated and
a massively parallel processor (the Intel Paragon) was employed to allow the quenched
averaging to be performedin situ. As we are interested in the ‘real’ dynamics of the model
we employed a simple single-spin Metropolis update. The actual runs were of relatively
short duration (O(104) sweeps) as this was sufficient to cover the temporal regions of
interest. As we have indicated above, a cold start withm = 1 was used.

Having dealt with the preliminaries, we now discuss the magnetization data in general
terms. We start from a magnetized system, and observe the magnetization decay. On general
grounds, we expect three different temporal regimes. At short times there is a transient,
non-universal region, which is expected to depend on the details of the dynamics (in our
case Metropolis). For intermediate times we expect to be able to detect a region with time
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power decay, where

m(t) ' A

tµ
. (2)

Finally, at large times on a finite graph we reach a plateau value for the remanent
magnetization. The decay rate to this plateau (when, due to the finite extent of the sample,
the system has reached the bottom of a valley) is a new dynamical effect, that can again be
different from the previous phase. We will see that it is probably an exponential decay to
the bottom of the hole. As we already have observed, in a finite-size system of volumeV

one expects

m(t) →t→∞ m(V ). (3)

Our current data is compatible both with a zero infinite-volume limit form(V ) and with a
non-zero limit (in the SK model atT = 0 one hasm(∞) = 0.474 [4]). A more precise
analysis of the volume dependence in our model would be necessary to settle this issue.

Let us now discuss in some detail the analysis of the magnetization data on the largest
graphs (N = 4000 vertices) simulated. For this graph size we have data samples of 20 000
lattice sweeps at eachβ value. The coldest data we will discuss is atβ = 2βc (βc ' 0.881
for the J = ±1 distribution onφ3 graphs). For lower temperature values the discreteness
of our couplings starts to play a role, and it is difficult to be sure of having determined
the asymptotic power behaviour. In figure 1 we plot the data we use for our best fit. We
use here times fromtmin = 20 to tmax = 2500. Our best fit, drawn in figure 1, gives an
exponentµ = 0.37. This fit is very stable. Repeating it by doubling the confidence window
both at small times and at large times (i.e. by selectingtmin = 40 andtmax = 1250) we find
µ = 0.37.

The magnetization data atβ = 2βc converges to a plateau in our large-time region (i.e.
t ' 15 000). A fit to a single power converging to a constant plateau does not work. In order
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Figure 1. Magnetization versus Monte Carlo time in log–log scale. HereN = 4000,T = Tc/2,
t ranging from 20 to 2500.
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Figure 2. Magnetization versus Monte Carlo time in log–log scale. HereN = 4000,T = 5Tc/9,
t ranging from 20 to 2500.

to make the fit work one has to add higher power terms or an exponential decay (see later).
The physics of what is happening is quite clear: we have a power decay for intermediate
times, and at large times the finite-volume system reaches the finite-size value of the
magnetization. The decay to such a finite value is not governed by the asymptotic power law
we measure in the intermediate-time region, and is probably (but not certainly) exponential.

In figure 2 we plot the magnetization data atβ = 9
5βc. Here the last point is already

slightly off a good power fit because the time needed to reach the plateau is larger for lower
T values. We report this fit in order to give a feeling of the kind of systematic effects one
gets, and because the fit withtmax = 1250 gives for the first two significant digits of the
exponent the same result. Again, the fit is stable. The fit in figure 3, atβ = 8

5βc, uses only
time points ranging from 40 to 1250, but its quality, with an exponent ofµ = 0.45, is again
very good.

Table 1. Magnetization time decay exponentµ for different T values. N = 4000. We also
show the time window used for determining the exponent.

T/Tc Time window µ

1
2 20–2500 0.37
5
9 20–2500 0.39
5
8 20–1250 0.43
2
3 10–625 0.46
5
7 10–315 0.49
5
6 10–160 0.54

1 5–77 0.67
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Figure 3. Magnetization versus Monte Carlo time in log–log scale. HereN = 4000,T = 5Tc/8,
t ranging from 40 to 1250.
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Figure 4. Magnetization versus Monte Carlo time in log–log scale. HereN = 4000,T = Tc, t

ranging from 4 to 77.

Power fits for values ofT closer toTc are equally good, and we report their results in
table 1. The time window we use moves to short times whenT → Tc as can be seen in
figure 4 for the time series atT = Tc. A power-law fit of the form in equation (1) using
a wider time window and incorporating the plateau value ofm(V ) gives very much poorer
results for all temperatures. AtTc the presence of a finite expectation value form due to
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Figure 5. Magnetization versus Monte Carlo time in log–log scale. HereN = 4000,T = Tc, t

ranging from 9 to 20 000.

the finite graph size is very clear. In figure 5 we try an exponential fit to the decay to the
finite-sizeplateau which in this case is reached after only 100 Monte Carlo sweeps. The
exponential fit is very good. In summary, a power fits well in the intermediate-time region,
while an exponential fit explains very well the large-time region. A fit with additional,
different power terms is also able to fit the large-time data: we consider our evidence for
the existence of such an exponential behaviour as only qualitative.

Having established the power-law decay at intermediate times, we now discuss the
behaviour of the exponent as the temperature is varied. In figure 6 we showµ(T/Tc).
The straight line passing through the origin is our best fit to the data. The linear fit works
well from Tc down to 0.6Tc, while around1

2Tc the fit slightly undershoots the data point.
Determining the exponent at lowT values becomes quite difficult (because it becomes
small!) so such a small discrepancy is probably not a problem. Our conclusion is that

µ(T ) ' 2

3

T

Tc

(4)

in a largeT region in the broken phase. The best estimate from both Ferraro [5] and
Rossetti [6] for the magnetization exponent is a linear dependence overT/Tc with coefficient
1, while, as we have already remarked, experiments favour a value close to 0.4. By a
coincidence we find2

3, which lies between these two values. Fits of magnetization time
series on smaller graphs confirm the findings on theN = 4000 graphs. For example with
N = 3000 we estimateµ(Tc/2) = 0.36, andµ(5Tc/6) = 0.55, in very good agreement
with the results of table 1.

We close this section with two final remarks about the magnetization time series. First,
we emphasize again that the evidence for a final exponential approach to the plateau value
is not overwhelmingly compelling, being mainly based on data close toTc. Far from Tc

after 20 000 sweeps we are still quite far from the plateau. In all cases fits done by allowing
for two or three different powers also work quite well. Secondly the plateau value for the
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Figure 6. The magnetization time decay exponentµ versusT/Tc for N = 4000. The straight
line passing through the origin is the best fit to the data.

magnetization looks quite constant withT in the broken phase. AtTc for N = 4000 we
havem∞ ' 0.013, atN = 3000 we havem∞ ' 0.0145. The remanent magnetization is
becoming smaller with increasing volume, but we cannot be sure about the absence of a
remanent magnetization at non-zeroT . We stress that our measurements of power law do
not rely on that, since we have selected a scaling region far away from the asymptotic (zero
or non-zero) limit.

The discussion of the energy exponentε,

E(t) ' E∞ − E1

t ε
(5)

goes along very similar lines. Here we can fit up to larger times: it is only very close toTc

that the power behaviour is spoiled, even for times up tot = 20 000. The difference with
the behaviour of the magnetization, where all of the non-zero plateau att = ∞ is probably
due to finite-size effects, is considerable. AtT = Tc/2 fitting from t = 100 to t = 20 000
we find a stable result, and a perfect fit with a very lowχ2 value. We report the best fits
to the exponentsε(T ) in table 2.

For lower β values we only have to discard a few more Monte Carlo points to get
a good fit. Only right atT = Tc does it seem that the asymptotic (non-simple power)
behaviour is encountered too early to get a good determination of the critical exponent. In
this case larger graphs are probably needed.

In figure 7 we plot our results forε as a function ofT/Tc, and our best linear fit (that
is very good). The best fit gives

ε ' 0.9
T

Tc

. (6)

We note that this is the first time that it has been possible to get an estimate of the dependence
of the energy exponent onT for mean-field-like systems. Results from the large-scale
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Table 2. Energy time-decay exponentε for different T values.N = 4000.

T/Tc ε

1
2 0.45
5
9 0.50
5
8 0.53
2
3 0.58
5
7 0.64
5
6 0.75

1 0.92
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Figure 7. The energy time-decay exponentε versusT/Tc for N = 4000. The straight line
passing through the origin is the best fit to the data.

simulation by Rossetti [6] for the SK model are good but not as clear cut as the ones we are
able to find here, while the infinite volume approach by Eisfeller and Opper [4] and Ferraro
[5] gives clear results for the magnetization exponent but not for the energy exponent.

To summarize, we believe we have attained a double goal. First, we have shown
that models onφ3 graphs are good definitions of mean-field spin glasses even where the
dynamical behaviour is concerned. Secondly, we have determined, with good numerical
precision, the exponents of the power decay of magnetization and energy. This opens the
way to a more systematic use ofφ3 graphs for performing a numerical analysis of spin
glasses.
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